Dilution Refrigerator Status

Angela Volpe1 Florian Martin1 Gunaranjan Chaudhry1
Philippe Camus1 Alain Benoit1 Sébastien Triqueneaux2
Thierry Tirolien3 Stéphane d’Escrivan4 Gerard Vermeulen1

1Néel Institute (CNRS and Université Joseph Fourier)
2Air Liquide Advance Technologies 3ESA 4CNES

Core and Beyond – 2012-06-26
Outline

- why closed cycle dilution refrigerator?
- CORE cryogenic requirements?
- overview closed cycle dilution refrigerator
- optimization \Rightarrow still \Rightarrow pump requirements
- option for pumps
- still and vapor liquid phase separation
- conclusion: status summary
Scaling the Planck dilution refrigerator

<table>
<thead>
<tr>
<th>Year</th>
<th>Project</th>
<th>Temperature</th>
<th>Cooling Power</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009: Planck</td>
<td>(CMB)</td>
<td>100 mK</td>
<td>200 nW</td>
<td>2 years</td>
</tr>
<tr>
<td>2019: SPICA</td>
<td>and/or Athena</td>
<td>50 mK</td>
<td>1 µW</td>
<td>5 years</td>
</tr>
</tbody>
</table>

Helium Flowrates
- **2009: Planck (CMB)**
 - $3 \text{ He } 6 \text{ µmols}^{-1}$
 - $4 \text{ He } 18 \text{ µmols}^{-1}$
- **2019: SPICA and/or Athena**
 - $3 \text{ He } 12 \text{ m}^3 \text{stp}$
 - $4 \text{ He } 36 \text{ m}^3 \text{stp}$

Storage on Satellite
- **2009: Planck (CMB)**
 - $3 \text{ He } 90 \text{ m}^3 \text{stp}$
 - $4 \text{ He } 180 \text{ m}^3 \text{stp}$
- **2019: SPICA and/or Athena**
 - $3 \text{ He } 90 \text{ m}^3 \text{stp}$
 - $4 \text{ He } 180 \text{ m}^3 \text{stp}$

Too costly, too heavy, and too big \Rightarrow closed cycle is required!
Scaling the Planck dilution refrigerator

2009: Planck (CMB)
- temperature: 100 mK
- cooling power: 200 nW
- lifetime: 2 years
- helium flowrates:
 - ^3He 6 µmol s$^{-1}$
 - ^4He 18 µmol s$^{-1}$

2019: SPICA and/or Athena
- temperature: 50 mK
- cooling power: 1 µW
- lifetime: 5 years
- helium flowrates:
 - ^3He 18 µmol s$^{-1}$
 - ^4He 360 µmol s$^{-1}$

Vermeulen, Volpe, Camus, Benoit, Triqueneaux, Tirolien, d'Escrivà

Dilution Refrigerator Status
Scaling the Planck dilution refrigerator

<table>
<thead>
<tr>
<th>2009: Planck (CMB)</th>
<th>2019: SPICA and/or Athena</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature: 100 mK</td>
<td>temperature: 50 mK</td>
</tr>
<tr>
<td>cooling power: 200 nW</td>
<td>cooling power: 1 µW</td>
</tr>
<tr>
<td>lifetime: 2 years</td>
<td>lifetime: 5 years</td>
</tr>
<tr>
<td>helium flowrates:</td>
<td></td>
</tr>
<tr>
<td>³He 6 µmol s⁻¹</td>
<td>³He 18 µmol s⁻¹</td>
</tr>
<tr>
<td>⁴He 18 µmol s⁻¹</td>
<td>⁴He 360 µmol s⁻¹</td>
</tr>
<tr>
<td>open cycle high pressure storage</td>
<td>open cycle high pressure storage</td>
</tr>
<tr>
<td>storage on satellite:</td>
<td></td>
</tr>
<tr>
<td>³He 12 m³ stp</td>
<td>³He 90 m³ stp</td>
</tr>
<tr>
<td>⁴He 36 m³ stp</td>
<td>⁴He 180 m³ stp</td>
</tr>
</tbody>
</table>
Scaling the Planck dilution refrigerator

<table>
<thead>
<tr>
<th>2009: Planck (CMB)</th>
<th>2019: SPICA and/or Athena</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature: 100 mK</td>
<td>temperature: 50 mK</td>
</tr>
<tr>
<td>cooling power: 200 nW</td>
<td>cooling power: 1 µW</td>
</tr>
<tr>
<td>lifetime: 2 years</td>
<td>lifetime: 5 years</td>
</tr>
<tr>
<td>helium flowrates:</td>
<td>helium flowrates:</td>
</tr>
<tr>
<td>3He 6 µmol s$^{-1}$</td>
<td>3He 18 µmol s$^{-1}$</td>
</tr>
<tr>
<td>4He 18 µmol s$^{-1}$</td>
<td>4He 360 µmol s$^{-1}$</td>
</tr>
<tr>
<td>open cycle high pressure storage on satellite:</td>
<td>open cycle high pressure storage on satellite:</td>
</tr>
<tr>
<td>3He 12 m3 stp</td>
<td>3He 90 m3 stp</td>
</tr>
<tr>
<td>4He 36 m3 stp</td>
<td>4He 180 m3 stp</td>
</tr>
</tbody>
</table>

too costly, too heavy, and too big \Rightarrow closed cycle is required!
CORE requirements?

- fit into Planck cooling chain
- $T = 0.1 \text{ K}$
- \dot{Q}_{lift}?
CORE requirements

- fit into Planck cooling chain
- $T = 0.1\,K$
- \dot{Q}_{lift}?

\dot{Q}_{lift}

- design of our system: $\dot{Q}_{\text{lift}} \geq 5\,\mu W$ at $T = 0.1\,K$
- smaller \dot{Q}_{lift} has a favorable system impact
 - lighter cooling chain
 - smaller pumps
Overview closed-cycle dilution refrigerator

Planck: open cycle dilution refrigerator

- \(\dot{n}_3 = 6 \, \mu\text{mol s}^{-1} \)
- \(\dot{n}_4 = 18 \, \mu\text{mol s}^{-1} \)
- mixture exit JT cooler \(\Rightarrow 1.5 \, \text{K} \)
- precooler: 10 mW at 4.5 K
Overview closed-cycle dilution refrigerator

Heat exchanger (HX)

3-tube HX ↔ 2-tube HX || superleak (SL)

Vermeulen, Volpe, Camus, Benoit, Triqueneaux, Tirolien, d'Escriv
Overview closed-cycle dilution refrigerator

Heat exchanger (HX)
3-tube HX ⇔ 2-tube HX || superleak (SL)

Still with vapor-liquid phase separator
making progress, but not yet working

Vermeulen, Volpe, Camus, Benoit, Triqueneaux, Tirolien, d'Escrivé
Dilution Refrigerator Status
Overview closed-cycle dilution refrigerator

Heat exchanger (HX)
3-tube HX ⇔ 2-tube HX || superleak (SL)

4He circulation: fountain pump (FP)

$n_4 \approx 400 \mu \text{mol/s for } Q_{fp} = 3.5 \text{ mW and } T = 2.1 \text{ K}$
Overview closed-cycle dilution refrigerator

Heat exchanger (HX)
3-tube HX ⇔ 2-tube HX || superleak (SL)

He circulation: fountain pump (FP)
\[\dot{n}_4 \approx 400 \mu\text{mol/s for } \dot{Q}_{fp} = 3.5 \text{ mW and } T = 2.1 \text{ K} \]

He circulation: pumps under development
\[\dot{n}_3 \text{ from } 20 \mu\text{mol s}^{-1} \text{ to } 60 \mu\text{mol s}^{-1} \text{ for } p_{\text{still}} \text{ from } 0.3 \text{ mbar to } 15 \text{ mbar} \]

Precooling heat load \(\approx 6 \text{ mW at } T = 1.7 \text{ K} \)

Vermeulen, Volpe, Camus, Benoit, Triqueneaux, Tirolien, d'Escriv
Overview closed-cycle dilution refrigerator

Heat exchanger (HX)
3-tube HX \Leftrightarrow 2-tube HX \parallel superleak (SL)

4He circulation: fountain pump (FP)
\[\dot{n}_4 \approx 400 \, \mu\text{mol/s} \text{ for } \dot{Q}_{fp} = 3.5 \, \text{mW} \text{ and } T = 2.1 \, \text{K} \]

3He circulation: pumps under development
\[\dot{n}_3 \text{ from } 20 \, \mu\text{mol s}^{-1} \text{ to } 60 \, \mu\text{mol s}^{-1} \text{ for } p_{\text{still}} \text{ from } 0.3 \, \text{mbar} \text{ to } 15 \, \text{mbar} \]

Precooling
heat load $\approx 6 \, \text{mW} \text{ at } T = 1.7 \, \text{K}$
Overview closed-cycle dilution refrigerator

$T < 50 \text{ mK}$

$T = 1.0 \text{ K}$

$T = 1.5 \text{ K}$

$T = 100 \text{ mK}$
OCDR (Planck) versus CCDR (CORE?)

OCDR (Planck)
- **fridge:** $\dot{Q} = 200 \text{ nW at } T = 100 \text{ mK during 2 years}$

CCDR (CORE?)
- **fridge:** $\dot{Q} > 5 \mu\text{W at } T = 100 \text{ mK for 5 years}$
OCDR (Planck) versus CCDR (CORE?)

OCDR (Planck)
- fridge: $\dot{Q} = 200 \text{ nW}$ at $T = 100 \text{ mK}$ during 2 years
- precooler: $\dot{Q} = 10 \text{ mW}$ at $T = 4.5 \text{ K}$

CCDR (CORE?)
- fridge: $\dot{Q} > 5 \text{ µW}$ at $T = 100 \text{ mK}$ for 5 years
- precooler: $\dot{Q} = 6 \text{ mW}$ at $T = 1.7 \text{ K}$ (OK on SPICA?)

Vermeulen, Volpe, Camus, Benoit, Triqueneaux, Tirolien, d'Escriv
OCDR (Planck) versus CCDR (CORE?)

OCDR (Planck)
- fridge: \(\dot{Q} = 200 \text{nW at } T = 100 \text{ mK during 2 years} \)
- precooler: \(\dot{Q} = 10 \text{ mW at } T = 4.5 \text{ K} \)
- He circulation:
 - space

CCDR (CORE?)
- fridge: \(\dot{Q} > 5 \mu \text{W at } T = 100 \text{ mK for 5 years} \)
- precooler: \(\dot{Q} = 6 \text{ mW at } T = 1.7 \text{ K (OK on SPICA?)} \)
- He circulation:
 - \(^3\text{He pump at } T = 15 \text{ K or } T = 300 \text{ K} \)
 - \(^4\text{He pump at } T = 2.1 \text{ K} \)
Thermal model for low temperature part

Thermal model is design guide

- Enthalpy $\propto T^2$
 - old $\dot{Q}/\dot{n}_4 T^2 = 5.7 \text{ J/mol/K}^2$
 - new $\dot{Q}/\dot{n}_4 T^2 \approx 3.0 \text{ J/mol/K}^2$

$\dot{Q}_{mco} = \dot{Q}_{detector}$
Thermal model for low temperature part

Thermal model is design guide

- Enthalpy \(\propto T^2 \)
 - old \(\frac{\dot{Q}}{\dot{n}_4} T^2 = 5.7 \text{ J/mol/K}^2 \)
 - new \(\frac{\dot{Q}}{\dot{n}_4} T^2 \approx 3.0 \text{ J/mol/K}^2 \)

- Viscous dissipation \(\propto \frac{1}{T^2} \)
 - \(\dot{q}_{3,\text{visc}}^0 \) of pure liquid \(^3\text{He}\)
 - \(\dot{q}_{m,\text{visc}} \) averaged over coexisting pure and dilute phases
Thermal model for low temperature part

Thermal model is design guide

- Enthalpy \(\propto T^2 \)

 \[
 \frac{\dot{Q}}{\dot{n}_4 T^2} = 5.7 \text{ J/mol/K} \\
 \text{new} \quad \frac{\dot{Q}}{\dot{n}_4 T^2} \approx 3.0 \text{ J/mol/K}
 \]

- Viscous dissipation \(\propto 1/T^2 \)

 \[
 \dot{q}_{3,\text{visc}}^0 \text{ of pure liquid } ^3\text{He} \\
 \dot{q}_{m,\text{visc}} \text{ averaged over coexisting pure and dilute phases}
 \]

- Kapitza resistance

 \[
 \dot{q}_{\text{ex}} = \frac{P_3 P_m}{P_3 + P_m} \alpha (T_3^4 - T_m^4)
 \]
Better understanding of Planck OCDR

Planck qualification model tests

![Graph showing a linear relationship between applied power (nW) and T^2 (K^2). The equation P = 2.44 n4 T^2 - 308 is highlighted.

Revisit Planck

- \(\dot{Q}_{\text{exp}}/\dot{n}_{4} T^2 = 2.44 \text{ J/mol/K}^2 \)
- closer to \(\dot{Q}_{\text{new}}/\dot{n}_{4} T^2 \approx 3.0 \text{ J/mol/K}^2 \)
- than \(\dot{Q}_{\text{old}}/\dot{n}_{4} T^2 \approx 5.7 \text{ J/mol/K}^2 \)
- estimated \(\dot{Q}_{\text{visc}} = 257 \text{ nW} \) in detector HX (\(L = 5 \text{ m} \), \(\varnothing = 0.3 \text{ mm} \)) is 80% of experimental 308 nW

Triqueneaux et al, Cryogenics 46 (2006) 288
Detector heat lift test setup

\[\dot{Q}_{mco} \approx \dot{Q}_{detector} \]

\[T_{qo} = T_{detector} \]

\[T_{load} = T_{liquid} \]

Experiment

Thermometers and heater mounted on copper cylinders and soldered to a spiral of CuNi or Ag tubing:

- viscous heating
- thermal contact
Viscous heating: $\varnothing = 0.6\,\text{mm} \text{ vs } \varnothing = 1.0\,\text{mm}$

Lower temperatures with $\varnothing = 1.0\,\text{mm}$ are due to less viscous heating. Different colors indicate different p_{still}.
More exchange area decreases T_{detector}. For Ag tube red, green, blue, and cyan indicate $p_{\text{still}} = 0.3, 5, 10, \text{ and } 15 \text{ mbar.}$
Performance and still conditions

Effect of p_{still} on performance

<table>
<thead>
<tr>
<th>p_{still} (mbar)</th>
<th>\dot{n}_3 (µmol s$^{-1}$)</th>
<th>\dot{n}_4 (µmol s$^{-1}$)</th>
<th>T_{liquid} (mK)</th>
<th>T_{detector} (mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>16.7</td>
<td>398</td>
<td>44.0</td>
<td>51.4</td>
</tr>
<tr>
<td>5.0</td>
<td>18.5</td>
<td>349</td>
<td>45.0</td>
<td>51.7</td>
</tr>
<tr>
<td>10.0</td>
<td>28.8</td>
<td>346</td>
<td>46.7</td>
<td>52.6</td>
</tr>
<tr>
<td>15.0</td>
<td>57.0</td>
<td>301</td>
<td>51.8</td>
<td>56.5</td>
</tr>
</tbody>
</table>

best = lowest \dot{n}_3 and highest \dot{n}_4 working; data shown is best

Optimum pump conditions

4He pump low \dot{n}_4, low T_{still}, and low x_{still}

3He pump low \dot{n}_3, high p_{still}, high x_{still}

Conclusion

best is $p_{\text{still}} = 5 \text{ mbar}$, $x_{\text{still}} = 10 \%$, and $T_{\text{still}} = 1 \text{ K}$
Development of 3He pumps

JAXA SPICA Joule-Thompson cooler 3He pump: 1.7 K stage!
- improve passive check valves from 40 mbar to 5 mbar
- pushing for collaboration

Twente adsorption pump at 15 K: 1.7 K stage!
- active check valves are being developed
- ESA funds prototype using Darwin pump cells

CNRS-AL Holweck (viscous or molecular drag) pump
- verification of CNRS model of Adixen pump
- prototype is built using ball bearings and off-the-shelf motor

CREARE Miniature turbo/drag pump? Costs 2 M€
- 2011 Mars Science Laboratory (NASA)
- 2018 ExoMars (ESA)
Vapor liquid phase separator (VLPS) in the still

Objectives, test whether

- only capillary forces can confine liquid mixture
- confinement is robust to upstream bulk liquid
- fountain pump can be connected upstream
- it works for $p_{\text{still}} > 5 \text{ mbar}$
- it works for $x_{\text{liquid}} = 10\%$

 Veronica, Volpe, Camus, Benoit, Triqueneaux, Tirolien, d'Escriv
Vapor liquid phase separator (VLPS) in the still

Functionality

- h by capacitive level gauge in hole to amplify sensitivity
- h check by T_{below} after evaporation by \dot{Q}_{below}
- measure \dot{n} and T versus \dot{Q} for several ^3He and ^4He amounts $\Rightarrow x_{\text{in}}$
- get x_{liquid} from known $\rho_{\text{vapor}}(x_{\text{liquid}}, T)$ for $0.6 \, \text{K} < T < 1.7 \, \text{K}$ and $x_{\text{liquid}} < 28 \%$
- only ^3He circulates instead of ^3He and ^4He as in the CCDR
Vapor liquid phase separator (VLPS) in the still

\[x_{in} = 26.3\% , \ p = 4 \text{ mbar}, \ V_{in} = 2.63 \text{ cm}^3, \ T_{bath} = 14.9 \text{ k}\Omega \]

Best VLPS results so far:
- \(x_{\text{liquid}} = 1.78\% \) at \(\dot{n} = 15.7 \mu\text{mol/s} \)
- \(x_{\text{liquid}} = 16.5\% \) at \(\dot{n} = 1.5 \mu\text{mol/s} \)

Next months:
- measure \(x_{\text{vapor}} \)
- other porous materials
Still is a vapor liquid phase separator

Still is a single capillary

- negative gravity test
- maximum \(\varnothing \) for stable interface? \(\varnothing \leq 2 \text{ mm} \)
- remove \(^4\text{He}\) in case of overflow
Conclusion: status summary

- thermal model is design guide for optimizing heat exchanger and mixer part ⇒ real progress with respect to Planck
- heat lift mixing chamber is 1 µW at $T_{\text{heater}} = 51.4 \text{ mK}$ and $T_{\text{liquid}} = 44.0 \text{ mK}$ ⇒ interface with a real detector?
- heat load precooler is 6 mW at 1.7 K due to helium circulation
 - must be possible to decrease it to 3 mW
- ^3He pump specifications: fridge works well at $p_{\text{still}} = 5 \text{ mbar}$ and $\dot{n}_3 = 20 \mu \text{mol/s}$, but $p_{\text{still}} = 10 \text{ mbar}$ and $\dot{n}_3 = 30 \mu \text{mol/s}$ is possible
- work in progress on three different ^3He pumps
- work in progress on the vapor-liquid phase separator in the still
- support structure (done for BLISS and at the Néel Institute)

- like to integrate any astrophysical instrument (also on earth)
Thank you!